A conserved MRF4 promoter drives transgenic expression in Xenopus embryonic somites and adult muscle.
نویسنده
چکیده
The muscle regulatory factor MRF4 is expressed in both embryonic and adult vertebrate skeletal muscle cells. In mammals the MRF4 gene has a complex cis-regulatory structure, with many kilobases (kb) of upstream sequence required for embryonic expression in transgenic mice. Here, initial functional comparison between Xenopus and mammalian MRF4 genes revealed that 610 base pairs (bp) of the XMRF4a proximal promoter drove substantial transgenic expression in X. laevis myogenic cells, from somites of neurula embryos through adult myofibers, and as little as 180 bp gave detectable expression. Over 300 bp of XMRF4a proximal promoter sequence is highly conserved among three X. laevis and X. tropicalis MRF4 genes, but only about 150 bp shows significant identity to mammalian MRF4 genes. This most-conserved XMRF4a region contains a putative MEF2 binding site essential for expression both in transgenic embryos and in transfected mouse muscle cells. A rat MRF4 minimal promoter including the conserved region also was active in transgenic X. laevis embryos, demonstrating a striking difference between the mouse and Xenopus transgenic systems. The longest XMRF4a promoter construct tested, with 9.5 kb of 5'-flanking sequence, produced significantly greater expression in transfected mouse cells than did promoters 4.3-kb or shorter, suggesting that the intervening region contains an enhancer, although no increased expression was evident when this region was included in transgenic X. laevis embryos. Further identification and analysis of Xenopus MRF4 transcriptional control elements will offer insights into the evolution of this gene and of the myogenic gene regulatory network.
منابع مشابه
Cardiovascular Overexpression of Transforming Growth Factor-b1 Causes Abnormal Yolk Sac Vasculogenesis and Early Embryonic Death
Transforming growth factor-b1 (TGF-b1) is expressed in the adult and embryonic vasculature; however, the biological consequences of increased vascular TGF-b1 expression remain controversial. To establish an experimental setting for investigating the role of increased TGF-b1 in vascular development and disease, we generated transgenic mice in which a cDNA encoding a constitutively active form of...
متن کاملThe mouse muscle creatine kinase promoter faithfully drives reporter gene expression in transgenic Xenopus laevis.
Developing Xenopus laevis experience two periods of muscle differentiation, once during embryogenesis and again at metamorphosis. During metamorphosis, thyroid hormone induces both muscle growth in the limbs and muscle death in the tail. In mammals, the muscle creatine kinase (MCK) gene is activated during the differentiation from myoblasts to myocytes and has served as both a marker for muscle...
متن کاملIntegrin Linked Kinase (X-ILK) Function during Embryonic Development and within Adult Tissues of Xenopus laevis
Integrin linked kinase (ILK) is a serine/threonine protein kinase implicated in the phosphatidylinositol 3’kinase (PI3’K) pathway. Integrin linked kinase has been investigated in different organisms such as mammalian systems (human, mice, rat), insects (Drosophila) and nematodes (Cenorhabditis elegans), however to date little data regarding ILK research on amphibians has been reported. In...
متن کاملExpression of myogenic regulatory factors in chicken embryos during somite and limb development
The expression of the myogenic regulatory factors (MRFs), Myf5, MyoD, myogenin (Mgn) and MRF4 have been analysed during the development of chicken embryo somites and limbs. In somites, Myf5 is expressed first in somites and paraxial mesoderm at HH stage 9 followed by MyoD at HH stage 12, and Mgn and MRF4 at HH stage 14. In older somites, Myf5 and MyoD are also expressed in the ventrally extendi...
متن کاملCardiovascular overexpression of transforming growth factor-beta(1) causes abnormal yolk sac vasculogenesis and early embryonic death.
Transforming growth factor-beta(1) (TGF-beta(1)) is expressed in the adult and embryonic vasculature; however, the biological consequences of increased vascular TGF-beta(1) expression remain controversial. To establish an experimental setting for investigating the role of increased TGF-beta(1) in vascular development and disease, we generated transgenic mice in which a cDNA encoding a constitut...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The International journal of developmental biology
دوره 54 4 شماره
صفحات -
تاریخ انتشار 2010